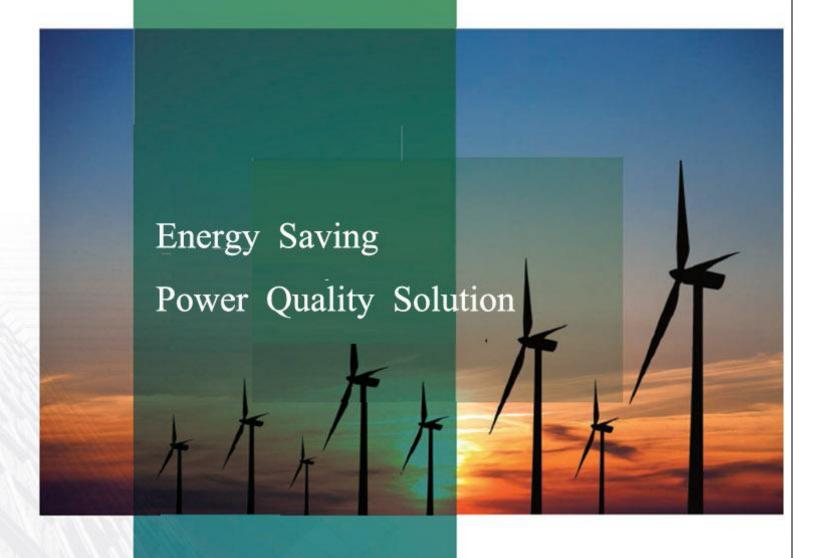


ENERGY SAVING POWER QUALITY SOLUTION

Anhui Zhongdian Electric Co., Ltd.

Tel: 86-552-4081055, 4077338

Fax: 86-552-4081155


Add.: No.25, Jinhe Rd, Economic&Development Zone,

Huaiyuan, Bengbu, Anhui, China

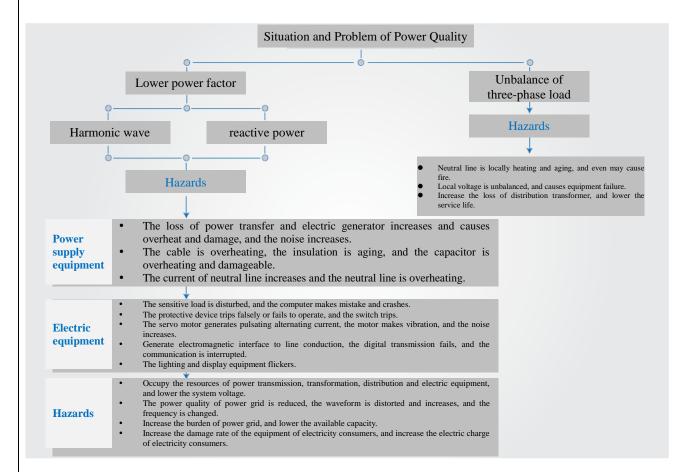
Mail:hanson@chinazddq.com

Web: http://www.zddqelectric.com/

Anhui Zhongdian Electric Co., Ltd.

Anhui Zhongdian(ZDDQ) Electric Co., Ltd. established in 2001. ZDDQ Technology Park locates in Bengbu City of Anhui Provice. We're a professional and leading manufacture, focus on advanced power quality improvement and power factor correction. APF,SVG,APFC are our main products. ZDDQ has a leading independent R&D team and quality supervision system, and maintain long-term cooperative relations with China University of Science and Technology, Zhejiang University and a number of well-known institutions.

We insists on customers' demand as the guide, with the technology innovation as the drive, through 20 years technology accumulation, has already owned a series of power quality products including APF, Medium voltage and low voltage SVG, Medium voltage and Low voltage Automatic Power Factor Correction, which are widely used in many countries and industries such as power grid, hospital, sewage plant, railway, subway, airport, seaport, oil and chemical industry, metallurgy, coal mine, tele-communication and high buildings and so on.


CONTENTS

Analysis of Power Quality
208V Static Var Generator ZD-SVG-02
400V Static Var Generator ZD-SVG-04
600V Static Var Generator ZD-SVG-06
6kv~35kv STATCOM ZD-FGSVG
Desirate List
Projects List
Company Certificate and Honor

Focus on Power Quality Improvement and Power Factor Correction.

Analysis of Power Quality

Problems, Hazards and Analysis of Causes

Common Harmonic Sources are as Follows

- Rectifier, charging device
- Frequency converter, DC speed regulator
- DC power supply, charger
- Electric arc furnace, induction heating equipment
- Welding equipment
- Electrified railway and ship electric drive
- Air conditioner and other household appliances
- Lighting equipment
- Uninterrupted power supply UPS, EPS
- Computer and other office equipment

Natio

National Standards for Harmonic Limits

For user equipment and public power distribution network, the power quality index directly affects the efficacy, service life and efficiency of equipment, and even may directly damage the electric equipment.

In accordance with *Quality of Electric Energy Supply – Harmonics in Public Supply Network* (GB/T 14549-1993), the public supply network standard is as follows:

Nominal voltage of power grid	Total harmonic distortion of	Voltage content rate of each	ch order of harmonic wave
(kV)	voltage (%)	Odd order	Even order
0.38	5.0	4.0	2.0

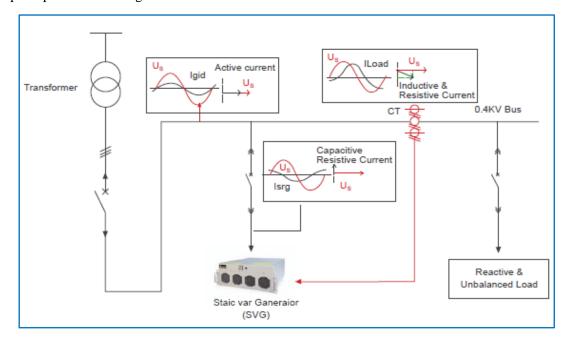
Standard	Reference		Harmonic order and allowable value of harmonic current, A																						
voltage	short-circuit	2	2		-				0	10	11	12	12	1.4	15	16	17	10	10	20	21	22	23	24	25
KV	capacity MVA	2	3	4	5	0	/	0	9	10	11	12	15	14	15	10	17	18	19	20	21	22	23	24	25
0.38	10	78	62	39	62	26	44	19	21	16	28	13	24	11	12	9.7	18	8.6	16	7.8	8.9	7.1	14	6.5	1

Benefit of Power Quality Control

- Improve the power factor, and save electric energy by 10%~25%;
- Reduce the inputs in capacity expansion of transformer, and extend the service life of equipment;
- Increase the operational reliability of equipment, and reduce the inputs in equipment maintenance and replacement;
- Maintain continuity and stability of production and power supply, and improve production efficiency;
- Meet national standard, and avoid the power supply management department to urge rectification and give punishment.

Application Industry of Power Quality Control

Power Grid, Semi-conductor, rail traffic, telecommunication, hospital, municipal administration, petrochemical, electronics, mining,, automobile manufacturing, machinery & heavy industry, marine petroleum, sewage treatment, cement, tobacco, plastics.


208V Static Var Generator ZD-SVG-02

ZD-SVGM Static Var generator (SVG) is the new standard in reactive energy compensation for 208V networks. This power electronic current source is the accurate and highly reliable solution for today's networks characterised by significant increase in harmonics, voltage variations caused by intermittent renewable sources connected to the network and voltage level due to the smart grid development. The DSP controlled IGBT topology enables a perfect compensation on each phase for both inductive and capacitive loads. It also correct phase unbalance where necessary. Immune to harmonics, resonance and voltage level, it offers a maintenance free solution reusable in any network configuration.

Principle

Following are principle of Static var generator.

Main Functions

- Precise and step-less power factor correction;
- Fast and dynamic compensation, with a response time less than 5ms;
- Both inductive and capacitive reactive power compensation;
- Improve power transmission stability.

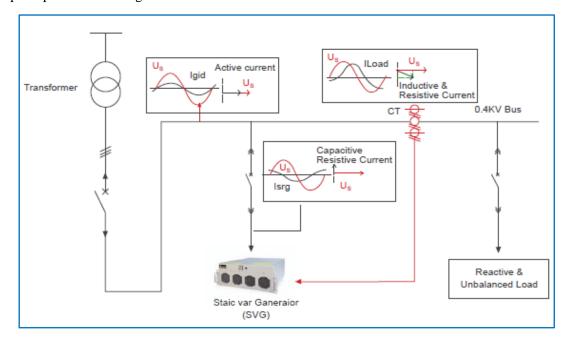
Technical Data

Model	ZD-02- 140DF-G	ZD-02- 280DF-G	ZD-02- 420DF-G	ZD-02- 560DF-G	ZD-02- 840DF-G	ZD-02- 1400DF-G	ZD-02- 2100DF-G						
Rated voltage (VAC)				208									
Input voltage range (VAC)		208±20%											
Working frequency(Hz)		50/60±5%											
Rated capacity (kvar)	±140	±280	±420	±560	±840	±1400	±2100						
Rated current (A)	367	735	1102	1470	2204	3670	5512						
Over current				1.2	L	L	I						
Size/mm(WxDxH)	800*80	00*2200	900*800*2	1200*800* 2200	1800*800* 2200	3500*800* 2200	5000*800* 2200						
Wiring system			1	3 Phase 4 Win	res	ı							
Cable entry				Bottom									
Working Temperature(°C)		-25°C∼	+40°C (≥40	C Using with	reducing the ra	ted capacity)							
Running humidity (%)			<95%	without con	densation								
Type of cooling				Air cooling	5								
Level of Protection				IP3X									
Mounting height above sea level	0≤ 2,0	00m at rated o	capacity; appro	priately reduce	the capacity if	it is greater tha	n 2,000m						
Reactive adjustment range		Continu	ous Adjustment	from capacitiv	e power to ind	uctive power							
Harmonic		Meetin	g 《Power qual	ity public grid l	narmonic》 GB	/T14549-93							
Response time				≤5ms									
Screen		TFT LCD	touched screen	real time vo	Itage and curre	nt data display							
Smart communication			TO	CP/IP, GPRS, M	Iodbus								
Storage and transportation temperature		-40∼70°C											
Reliability & Life				20 years									
EMC			Meeting G	B7251-2005(G	B/T7261-2000))							

Remarks: 1, Single cable entry can be divided into forward entry, backward entry and optional

- 2, The parameter and specification for above SVG model products, Maybe changed cause of the client's site real needful for different situations
 - 3, The matching relationship is not unique, User can choose according the application
 - 4, The size of cabinet will be difference with different options
 - 5,The width less than 1200mm (including) for single cabinet installation

400V Static Var Generator ZD-SVG-04



ZD-SVGM Static Var generator (SVG) is the new standard in reactive energy compensation for 400V networks. This power electronic current source is the accurate and highly reliable solution for today's networks characterised by significant increase in harmonics, voltage variations caused by intermittent renewable sources connected to the network and voltage level due to the smart grid development. The DSP controlled IGBT topology enables a perfect compensation on each phase for both inductive and capacitive loads. It also correct phase unbalance where necessary. Immune to harmonics, resonance and voltage level, it offers a maintenance free solution reusable in any network configuration.

Note: If site voltage need 480V device, please inform in advance.

Principle

Following are principle of Static var generator.

Main Functions

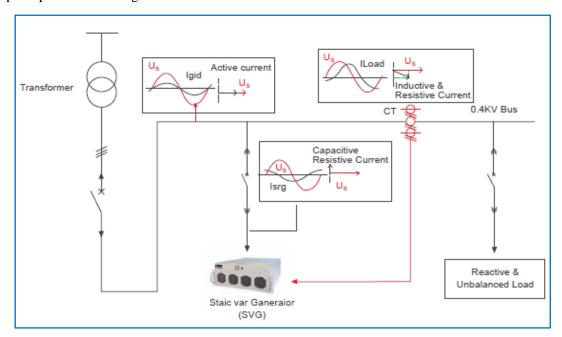
- Precise and step-less power factor correction;
- Fast and dynamic compensation, with a response time less than 5ms;
- Both inductive and capacitive reactive power compensation;
- Improve power transmission stability.

Technical Data

Model	ZD-04- 250DF-G	ZD-04- 500DF-G	ZD-04- 750DF-G	ZD-04- 1000DF-G	ZD-04- 2000DF-G	ZD-04- 3000DF-G	ZD-04- 5000DF-G				
Rated voltage (VAC)		400									
Input voltage range (VAC)		400±20%									
Working frequency(Hz)		50/60±5%									
Rated capacity (kvar)	±200	±300	±400	±600	±800	±1000	±1200				
Rated current (A)	300	450	600	900	1200	1500	1800				
Over current			1	1.2	1						
Size/mm (WxDxH)		800*800*22	00	1600*80	00*2200	2400*8	00*2200				
Wiring system				3 Phase 4 Win	res						
Cable entry				Bottom							
Working Temperature(℃)		-25°C~-	+40°C (≥40°	C Using with r	reducing the rat	ed capacity)					
Running humidity (%)			<95%	without con	densation						
Type of cooling				Air cooling	5						
Level of Protection				IP3X							
Mounting height above sea level	≤ 2,000	Om at rated ca	pacity; approp	riately reduce th	he capacity if it	t is greater than	2,000m				
Reactive adjustment range		Continue	ous Adjustment	from capacitiv	re power to ind	uctive power					
Harmonic		Meeting	g 《Power qual	ity public grid l	narmonic》GB	/T14549-93					
Response time				≤5ms							
Screen		TFT LCD	touched screen	real time vo	ltage and curre	nt data display					
Smart communication			TO	CP/IP, GPRS, M	Iodbus						
Storage and transportation temperature		-40∼70°C									
Reliability & Life				20years							
EMC			Meeting G	B7251-2005(G	B/T7261-2000))					

Remarks: 1, Single cable entry can be divided into forward entry, backward entry and optional

- 2, The parameter and specification for above SVG model products, Maybe changed cause of the client's site real needful for different situations
 - 3, The matching relationship is not unique, User can choose according the application
 - 4, The size of cabinet will be difference with different options
 - 5,The width less than 1200mm (including) for single cabinet installation


600V Static Var Generator ZD-SVG-06

ZD-SVGM Static Var generator (SVG) is the new standard in reactive energy compensation for 600V networks. This power electronic current source is the accurate and highly reliable solution for today's networks characterised by significant increase in harmonics, voltage variations caused by intermittent renewable sources connected to the network and voltage level due to the smart grid development. The DSP controlled IGBT topology enables a perfect compensation on each phase for both inductive and capacitive loads. It also correct phase unbalance where necessary. Immune to harmonics, resonance and voltage level, it offers a maintenance free solution reusable in any network configuration.

Principle

Following are principle of Static var generator.

Main Functions

- Precise and step-less power factor correction;
- Fast and dynamic compensation, with a response time less than 5ms;
- Both inductive and capacitive reactive power compensation;
- Improve power transmission stability.

Technical Data

Model	ZD-06- 200DF-G	ZD-06- 300DF-G	ZD-06- 600DF-G	ZD-06- 900DF-G	ZD-06- 1200DF-G	ZD-06- 3000DF-G	ZD-06- 6000DF-G					
Rated voltage (VAC)		600										
Input voltage range (VAC)		600±20%										
Working frequency(Hz)		50/60±5%										
Rated capacity (kvar)	±200	±300	±600	±900	±1200	±3000	±6000					
Rated current (A)	192	289	577	866	1155	2887	5774					
Over current		<u>'</u>	•	1.2	l	•	<u> </u>					
Size/mm (WxDxH)	800*80	00*2200	1600*800* 2200	2400*800* 2200	2400*800* 2200	6000*800* 2200	6500*800* 2200					
Wiring system				3 Phase 4 Win	res							
Cable entry				Bottom								
Working Temperature(°C)		-25°C~+	-40°C (≥40°	C Using with r	educing the rat	ed capacity)						
Running humidity (%)			<95%	6, without cond	lensation							
Type of cooling				Air cooling								
Level of Protection				IP3X								
Mounting height above sea level	≤ 2,00	0m at rated ca	apacity; approp	riately reduce t	he capacity if i	t is greater than	n 2,000m					
Reactive adjustment range		Co	ontinuous from	capacitive pow	er to inductive	power						
Harmonic		Meeting	g 《Power qual	ity public grid l	narmonic & GB	/T14549-93						
Response time				≤5ms								
Screen		TFT LCD	touched scree	n, real time vol	tage and curren	nt data display						
Smart communication			TC	CP/IP ,GPRS, M	Iodbus							
Storage and transportation temperature		-40∼70°C										
Reliability & Life				20 years								
EMC			Meeting G	B7251-2005(G	B/T7261-2000))						

- Remarks: 1, Single cable entry can be divided into forward entry, backward entry and optional
- 2, The parameter and specification for above SVG model products, Maybe changed cause of the client's site real needful for different situations
 - 3, The matching relationship is not unique, User can choose according the application
 - 4, The size of cabinet will be difference with different options
 - 5,The width less than 1200mm (including) for single cabinet installation

6kv~35kv STATCOM ZD-FGSVG

Like SVC but faster, STATCOM continuously provides variable reactive power in response to voltage variations, supporting the stability of the grid. STATCOM operates according to voltage source converter (VSC) principles, combining unique PWM (pulse width modulation) with millisecond switching. STATCOM functions with a very limited need for harmonic filters, contributing to a small physical footprint. If required, switched or fixed air core reactors and capacitors can be used with the VSC as additional reactive power elements to achieve any desired range.

ZD-FGSVG STATCOM has outdoor type and indoor type, with air cooling system or water cooling system.

Principle

Following are principle of Static var generator.

STATCOM Advantages

STATCOM ,Best Power Quality

Solutions for Medium Voltage Grids

- The fastest dynamic voltage stabilizer
- Better control for power grids, better load compensation
- Optimal stability and quality
- In harmony with harmonics-Best flicker reduction
- Fastest response time-efficient solution

Technical Data

	Rated voltage	6kv~35kv					
	Operating frequency	50/60Hz					
	Electrical connection	Three-phase three-wire					
	Rated Capacity	1Mvar~100Mvar					
	Reactive Power Compensation	Compensate inductive and capacitive power continuously and smoothly.					
Electrical	Control Power	380VAC, 220VAC, or 220VDC					
properties	Over-load Capacity	>120%					
	Response time	≤5ms					
	Active power loss	≤0.8%					
	THDi (Current)	≤3%					
	Start regulated reactive power	10kvar					
	Resolution of compensate current	1%					
	Main Circuit	H-Bridge IGBT					
	Redundant Design	Yes					
	Power Cells Design	Yes					
Control	Protection	The protection strategy includes three levels, such as component protection, device protection, system protection.					
characteristics	Running Mode	Constant reactive power, constant assessment point of reactive power, constant assessment point of power factor, constant assessment point of voltage, load compensation and 96 points time sharing control.					
	Communication Interface	Ethernet, RS485, CAN, high-speed optical communication interface					
	Communication Protocol	Communication protocol: MODBUS_RTU, ProfiBUS, CDT91, IEC61850-103/104, CANOPEN, User-defined.					
	Weight and Dimensions	Refer to the model table.					
Structural	Level of protection	Indoor IP40,Outdoor IP44					
characteristics	Cooling system	Air cooling system or water cooling system					
	Installation method	Indoor or outdoor(Container)					
	Ambient temperature	-10~40°C					
Environmental	Relative humidity	Maximum 90%(25°C), without condensation.					
requirements	Mounting height above sea level	≤2,000m at rated capacity; If above, should inform in advance.					
	Seismic intensity	8 degree					

Projects List

SN	Product	Capacity	User	Field	City	Country
1	10kv APFC	2000Kvar	Runfeng Power	Mining	Liupanshui	CN
2	10kv APFC	3000Kvar	CN Electric Construction	Power Distribution	Mianyang	CN
3	6kv APFC	3600kvar	Weifang Chemical Factory	VFDs	Weifang	CN
4	400V SVG	1100kvar	Hebei Yanzhong Power	Mining	Shijiazhuang	CN
5	10KV SVG	2000Kvar	Ningbo Power Design Institute	Solar	CiXi	CN
6	35kv SVG	4Mvar	GD Changsheng	Solar	Dawu	CN
7	6kv APFC	2Mvar	Tongxin Power design Institute	Rolling furnace	Zhengzhou	CN
8	35kv SVG	10Mvar	CN Huadian Corporation	Wind	Yantai	CN
9	10kv APFC	6Mvar	JinRen Design Institute	Electrolytic AL Manu.	Jijing	CN
10	400V APF	1200A	National Grid(jiangsu)	Hospital	Heze	CN
11	400V APF	600A	Hebei TX power Design Institute	Hospital	Baoding	CN
12	400V SVG	900kvar	Jinan Metro	Railway/metro	Jinan	CN
13	10KV SVG	1400kvar	Xian hh power design institute	Power Distribution	Xining	CN
14	11kv APFC	1200kvar	Motors	Sugar factory	Jhang	PK
15	SVG	1MVAR	Solar	Solar station	Icheon	KR
19	400V SVG	800Kvar	Harmonics from device	Medical		IN
20	380V SVG	600Kvar	Lights	high building		BR
21	6.6kv SVG	1000Kvar	Solar	Solar Sation		MY
23	7.2KV APFC	1500kvar	Poor Power Factor	Steel		RO
24	380V APF	800A	VFDs and Motors	Chemical		EG
25	380V APF	400A	Melting funace	Steel factory		BR
26	380V APF	300A	Harmonics from device	Hospital		BR
27	440V APF	300A	Harmonics from device	Hospital		СО
28	208V SVG	6*75Kvar	Motors	Factory		СО
29	440V APFC	350Kvar	Motors	foundry factory		СО
30	400V APF	300A	Motors	Steel factory		IN
31	400V SVG	400kvar	Motors and ovens	Bakery factory		ZA
32	400V APF	300A	VFDs	Oil factory		LB
33	400V SVG	200Kvar	Motors	Steel factory		IN
34	400V APF	300A	VFDS	Seaport		SG
35	400V APF	600A	VFDs	Seaport		SG
36	3.3kv APFC	675kvar	Waste water treatment	Motors		ZW
37	33kv Statcom	2.5Mvar	Symbior 8MW solar plant	Solar plant		BD
38	6.6kv Statcom	2Mvar	Auto Manufactory	Automotive machine		ТН
39	10kv Statcom	3Mvar	Wind Plant	Wind Plant		KR
40	35kv s tatcom	30Mvar	Power Plant	Oil and Gas		GO

Company Certificate and Honor

	0	0	9-90	O	8 - 201 () 8 - 201 ()	9-11-0
- 11 Project			Sept.	and a	9 1	9 =
and the second		***		THE STATE OF	The state of the s	and the second
3		AMERICAN (B)			Patricial Control of the Control of	# 10 m
mandar O			SHEET SEE	Marine Control of the		storms (g)
training to the same of the sa	Post (8)	1 + 1 · (a)		- 0	•	- a
						- 0

PAGE 13 PAGE 14